Human Action Recognition Based on Multiple Instance Learning
نویسندگان
چکیده
منابع مشابه
Dissimilarity-Based Multiple Instance Learning
In this paper, we propose to solve multiple instance learning problems using a dissimilarity representation of the objects. Once the dissimilarity space has been constructed, the problem is turned into a standard supervised learning problem that can be solved with a general purpose supervised classifier. This approach is less restrictive than kernelbased approaches and therefore allows for the ...
متن کاملModel-Based Multiple Instance Learning
Point patterns are sets or multi-sets of unordered points that arise in numerous data analysis problems. This article proposes a framework for model-based point pattern learning using point process theory. Likelihood functions for point pattern data derived from point process theory enable principled yet conceptually transparent extensions of learning tasks, such as classification, novelty dete...
متن کاملMultiple-Instance Learning: Multiple Feature Selection on Instance Representation
In multiple-Instance Learning (MIL), training class labels are attached to sets of bags composed of unlabeled instances, and the goal is to deal with classification of bags. Most previous MIL algorithms, which tackle classification problems, consider each instance as a represented feature. Although the algorithms work well in some prediction problems, considering diverse features to represent a...
متن کاملOn Generalized Multiple-instance Learning
We describe a generalization of the multiple-instance learning model in which a bag’s label is not based on a single instance’s proximity to a single target point. Rather, a bag is positive if and only if it contains a collection of instances, each near one of a set of target points. We list potential applications of this model (robot vision, content-based image retrieval, protein sequence iden...
متن کاملMultiple Instance Learning for Visual Recognition: Learning Latent Probabilistic Models
Many visual recognition tasks can be represented as multiple instance problems. Two examples are image categorization and video classification, where the instances are the image segments and video frames, respectively. In this regard, detecting and counting the instances of interest can help to improve recognition in a variety of applications. For example, classifying the collective activity of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Sciences
سال: 2014
ISSN: 1812-5654
DOI: 10.3923/jas.2014.2276.2284